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The one-dimensional Frenkel-Kontorova �FK� model, well known from the theory of dislocations in crystal
materials, is applied to the simulation of the process of nonelastic stress propagation along transform faults.
Dynamic parameters of plate boundary earthquakes as well as slow earthquakes and afterslip are quantitatively
described, including propagation velocity along the strike, plate boundary velocity during and after the strike,
stress drop, displacement, extent of the rupture zone, and spatiotemporal distribution of stress and strain. The
three fundamental speeds of plate movement, earthquake migration, and seismic waves are shown to be
connected in framework of the continuum FK model. The magnitude of the strain wave velocity is a strong
�almost exponential� function of accumulated stress or strain. It changes from a few km/s during earthquakes
to a few dozen km per day, month, or year during afterslip and interearthquake periods. Results of the
earthquake parameter calculation based on real data are in reasonable agreement with measured values. The
distributions of aftershocks in this model are consistent with the Omori law for temporal distribution and a 1 /r
for the spatial distributions.
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I. INTRODUCTION

According to modern plate tectonics, the earth crust
movement is caused by mantle convection, whereby faults
on the earth’s surface arise along the lines of highest hori-
zontal gradient of the flow velocity. The comparatively rigid
plates move slowly relative to each other along the faults at
a rate of a few centimeters per year. These movements are
essentially nonuniform in time and space and accompanied
by the phenomena of earthquakes, postseismic relaxation and
creep, and seismic gaps �1�. The origins of crustal deforma-
tion �strain or stress waves� and earthquake migration along
active faults are current problems in plate dynamics. Since a
strain wave implies a stress wave and vice versa, we shall
discuss only the strain wave in what follows.

Migration of large earthquakes has been explained in
terms of progressive failure caused by stress redistribution
along faults. Each seismic slip increases stress in the neigh-
boring fault segment, thus facilitating nucleation of the en-
suing large event. An alternative explanation is that the regu-
lar seismic migration is driven by strain propagation
�deformation fronts or strain waves�, which adds tectonic
stress and, hence, triggers large earthquakes in critically
stressed fault segments.

Since there is no explicit experimental observations of
strain wave the question arises if such phenomena do exist?
The problem of slow strain waves has been discussed in the
literature for over 30 years. The existence of these waves
was theoretically grounded and inferred implicitly from geo-
physical responses but explicit experimental evidence has
been far insufficient. The difficulty in detection of strain
waves in the earth is due to the absence of a specific type of
detector capable of recording these waves and also in the
ambiguity of interpretation of the observed values and the
absence of an adequate theory which could enable one to

determine the parameters of these waves and the most prob-
able location for recording them.

In terms of wave parameters, strain waves are similar to
seismic waves but have ultralow propagation velocities V
=O�10 km /yr�, predominant ultralow frequencies f
=O�10−7 Hz�, and very long wavelength �=O�10 km�.
These peculiarities make instrumental observations of the
strain wave propagation effect extremely difficult. We think
these are such waves which are responsible for slow redis-
tribution of stresses within the lithosphere.

Presently the most feasible way of strain wave detection
is recording of perturbation migration in the geophysical
fields. A material carrier of such perturbations is necessary,
and this can be the wave only, as geomass movement does
not occur. A wave mechanism appears to be more realistic
than any other probable mechanism.

Our motivation for this study was to construct a math-
ematical model �in point of fact, a simple heuristic model�
which describes the mechanism generating strain waves
along faults and the observable effects associated with them.
The spasmodic local motion along a fault requires essentially
less external stress than spatially and temporally uniform
motion. This process is analogous to plastic deformation in
crystal materials. The plasticity is realized by the movement
of edge dislocations, which are a certain type of crystal lat-
tice defect. Such movement requires much less stress than is
necessary for uniform relative displacement of crystal parts
along a crystal plane �2�. So the movement of an edge dis-
location in a crystal slip plane has some common features
with a strain wave propagating along a transform fault.

Here the processes of nucleation, movement, and interac-
tion of edge dislocations are described by the Frenkel-
Kontorova �FK� model �3�, this is simplified single fault
model. In the continuum limit the FK model is described by
the sine-Gordon �SG� equation �4–6�. Solutions of the SG
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equation can be used to model various phenomena of plate
movement such as strain waves, regular earthquakes, slow
earthquakes, and afterslip processes.

The paper is organized as follows. In Sec. II the observa-
tional data and theoretical models of seismic migration and
strain waves are presented. Section III contains our model
description. In Sec. IV some suitable solutions of the SG
equation are extracted. Examples of the application of these
solutions to fault dynamics are considered in Sec.V. Section
VI contains concluding remarks.

II. OBSERVATIONAL DATA AND THEORETICAL
MODELS

For an explicit overview of observational data on seismic
migration and strain waves, see Refs. �7–13�. Propagation of
strain waves is represented quantitatively by the rate of
earthquake migration and geophysical responses to active
faulting.

Tectonic waves propagating at speeds of 10–100 km/yr
are detected from migration of large earthquakes �14�, tem-
poral variations in seismic wave velocities �11�, offsets of
water level in wells along faults �15�, tilt and ground motions
�16�, cyclic migration of aseismic gaps in the earth’s mantle
�12�, and oscillatory motion of seismic reflectors �17,18�.

Strain waves in faults, with velocities of 1–10 km/day, are
inferred from rapid propagation of remotely triggered seis-
micity before and after large earthquakes �19�, and from ra-
don, electrokinetic, and hydrogeodynamic signals �12�. Geo-
physical signals have the shape of solitary waves �solitons�
and propagate along crustal faults �12�.

An important feature of strain waves is the magnitude of
the velocity, which is much less �by a factor of 10−6–10−7�
than the seismic velocity and much more �by a factor of
106–107� than the average velocity of relative motion of tec-
tonic plates. Thus, a quite large collection of observational
data provides either explicit or implicit evidence for strain
wave propagation in the crust over a range of velocities. A
sequence of earthquakes along a fault can be triggered by
propagating strain waves generated in the crustal fault during
rotation of blocks, along a plate boundary, or at the
lithosphere-asthenosphere boundary.

Elsasser �20� proposed a hypothesis of lithospheric stress
guides and obtained an equation of local stress transfer in a
hard elastic lithosphere superimposed upon a soft viscous
asthenosphere. He did not mention waves, and the stress
guides are the only indirect indication of the wave
mechanism of stress propagation in the “lithosphere-
asthenosphere” system, with stress diffusing horizontally
along the viscous lithosphere-asthenosphere boundary.

Later Bott and Dean �22� applied the ideas of Elsasser
�20� to the mechanism of seismicity transfer along plate
boundaries. Bott and Dean invoked “stress �strain� waves”
propagating along plate edges at speeds of 0.1–100 km/yr,
depending on the wave period and the mechanical properties
of lithosphere and asthenosphere, and derived an equation
for their velocity.

Lehner et al. �25� further pursued Elsasser’s theory of
stress diffusion to analyze great earthquake disturbances and

to model time-dependent stress alterations at rupturing plate
boundaries. The spatial and temporal characteristics of the
stress alterations and earthquake patterns they predicted sug-
gest a significant role of viscoelastic lithosphere-
asthenosphere coupling.

Nikolaevskiy �24� extended Elsasser’s model, assuming
flexure and compression of a plate rigid over asthenospheric
flow, and obtained a rigorous mathematical theory in which
tectonic stress propagates as solitary waves, with their en-
ergy fed from the stationary asthenospheric flow to compen-
sate for viscous loss. Thus he based the autowave generation
mechanism of tectonic waves on the lithosphere-
asthenosphere system.

Besides the tectonic waves propagating through the litho-
sphere, strain waves may propagate along crustal and litho-
spheric faults. The models of Savage �21� and Ida �23� were
aimed at explaining seismic migration patterns, including
disturbances propagating as stress diffusion at a rate con-
trolled by the response of fault gouge material. Savage �21�
described movements of crustal blocks in terms of edge dis-
locations flowing along a transform fault, in which slip is
transferred by creep. He suggested that “creep waves” can be
produced by avalanche release of dislocations during an
earthquake, which propagate down the transform fault in the
direction of dislocation flow. Ida �23� obtained a solution for
deformation pulses which move slowly along faults, without
change in shape, at a constant velocity. The deformation
propagation velocity is controlled mainly by viscosity, thick-
ness, and strength of fault gouge, and ranges from 1–10 km/
day to 10–100 km/yr.

A closely related topic is the modeling of the temporal
and spatial distributions of aftershocks, which is linked to the
question of their triggering mechanism. In some cases after-
shocks migrate from the main shock with a velocity ranging
from 1 km/h to 1 km/y �26,27�. The temporal distribution of
aftershocks obeys a modified Omori law �28�, which may be
described by a variety of physical mechanisms �29�. The
origin of the spatial distribution is more controversial ��30�
and references therein�. Several researchers have described it
as “aftershock diffusion” �27,29,31–34�, but there is some
doubt that such a mechanism exists �30�. Many models im-
plicitly or explicitly assume that aftershocks are triggered by
stress changes although there are alternative approaches
�29,35–37�. Recent observations have shown that decay of
aftershocks as a function of distance fit an inverse first-power
law �38� suggesting that the triggering may be a seismic
wave generated by the main shock �38,39�.

Recently, the existence of “slow earthquake” has been re-
ported in subduction areas �40,41� as well as at the San An-
dreas fault �42�. The distinguishing feature of such events is
the long duration time �from 2 to 6 orders of magnitude
larger than for regular earthquakes�. Furthermore, the seis-
mic moment of such events is proportional to the duration of
the event, in contrast to regular earthquakes, for which the
seismic moment is proportional to the cube of the duration
time �43�. The question arises as to the relationship between
seismic parameters in such events �44�. Can they be de-
scribed by the same model as regular earthquakes?

In the last decade the SG equation has been intensively
applied to describe phenomena such as the rotation and slid-
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ing of crustal blocks �24,45–49�. The discovery of solitary
strain waves in geophysical fields motivated the modeling of
rotational oscillations of crustal blocks in faults �24�. Inves-
tigation of these waves provides clues to the migration
mechanisms of earthquake precursors �12,24� and of tectonic
solitary waves �46�. A model of strain waves propagating
along a chain of blocks in the earth’s crust was proposed by
Vikulin �47�. It is assumed that the generation of strain wave
has a planetary origin and is connected with the earth’s rota-
tion about its axis. A phenomenological model by Bykov
�48,49� contains the major factors responsible for the process
of unstable sliding �asperities, roughness of contact surfaces�
and shows the possibility of the existence of solitary waves
of activation of crustal faults, viz. deformation localized at
the mesoscopic level and propagating along the fault in the
shape of a solitary wave with a velocity which determines a
sliding regime along the fault.

In our paper a solution of the SG equation in the form of
slow cnoidal waves, i.e., a periodic succession of pulses with
a spatial period, has been applied to describe fault dynamics.

III. MODEL DESCRIPTION

Macroscopically the friction between plate surfaces gov-
erns the local dynamical behavior of the fault. These surfaces
always contain roughness �asperities�. During plate motion
the asperities are deformed. The relative shift of asperities
leads to emergence of a restoring force �50�. Thus, the fric-
tional force depends on the relative position of the asperities
on the opposing surfaces and changes quasiperiodically. On
the other hand, a deformed asperity affects the adjacent as-
perities on the same plate. So asperities on the same plate
interact with each other and with the asperities on the oppo-
site plate. The simplest model of this process is shown in
Fig. 1. The masses M represent asperities on the top friction
surface. They are constrained to move along an uneven sur-
face. The horizontal and vertical harmonic springs simulate
the interaction between asperities on the same and opposite
plates, respectively. The upper ends of the vertical springs
are fixed in the vertical direction and can move freely in the
horizontal direction. The lower surface is considered rigid.
This model coincides with the well-known FK phenomeno-
logical model describing edge dislocations in crystals �3�. In
the FK model the harmonic forces arise due to motion of the
ball along the uneven surface in a gravitational field, whereas
in our model the harmonic forces arise due to the vertical
springs. Since the mathematical descriptions of these two
models are identical we will refer to both models as the FK
model.

This model has some common features with the Burridge-
Knopoff �BK� model �51�, which is widely used to simulate
spatial and temporal patterns of seismicity and its statistical
features, such as large earthquake recurrence, the Gutenberg-
Richter law, foreshock and aftershock activities, and preseis-
mic quiescence �52–58�. The BK model is a chain of blocks
coupled to each other by harmonic springs and attached to a
fixed surface by flat springs. These blocks are interacting
with another surface, moving relative to the fixed one with a
given velocity through frictional forces. The dynamic fea-

tures of the BK chain are defined by the explicit dependence
of the frictional force on the velocity of relative plate move-
ment. Complex spasmodic movement of the blocks is ob-
tained by selecting a specific nonlinear relationship between
the frictional force and the velocity. In the FK model the
nonlinear behavior of the chain is implicit and does not re-
quire an explicit frictional force.

Based on this simplified description and the analogy be-
tween plasticity in crystal materials and plate movement
along a fault we postulate that the latter may be described by
the FK model and so by the dimensionless one-dimensional
�1D� SG equation,

�2�

��2 −
�2�

��2 = sin � , �1�

where �=2�u /b, �= tcA /b, and �=xA /b. Here u is the dis-
placement of the plate surface in the x direction �along the
fault� relative to the adjusted plate, b is the typical size of
asperities in the x direction, c is the velocity of an elastic
compressional wave in the earth’s crust of density �, t is the
time, and A is a dimensionless empirical scaling factor which
incorporates the roughness between adjusted plates. The de-
rivatives �=�� /�� and w=�� /�� are the dimensionless
strain �xx component of strain tensor� and the dimensionless
velocity of the asperities in the fault area; � and w are in
units of A /2� and cA /2�, respectively. It is also useful to
introduce the xx component of the stress tensor �xx��. In
the absence of other components of the stress tensor, � can
be expressed through u by the formula �=�c2�u /�x �59�.
Thus, the dimensionless stress �=� is measured in units
�c2A /2�.

IV. SOLUTIONS OF THE SINE-GORDON EQUATION
AND THEIR INTERPRETATION

The SG Eq. �1� has been actively investigated with regard
to a wide spectrum of applications. Here we will extract
some solutions, previously obtained elsewhere �see below�,
which can be used for describing some of the processes of
plate movement along a fault.

We will consider first a periodic �traveling wave� solution,
which is convenient for determining the relationships be-
tween parameters of the model and the parameters of plate
movement, and then a nonstationary solution, describing the

FIG. 1. The model. The balls represent asperities. The sine-
shaped surface is the opposite plate. The horizontal and vertical
harmonic spring model interaction between asperities in the same
and opposite plates, respectively. b is the typical distance between
neighboring asperities.
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dynamics of a wave train with a large number of oscillations
�dislocations�.

A. Periodic solution

Let us consider solutions of the one-dimensional SG
equation of the form �=��	�, where 	=k
, 
=�−U�, k is
the wave number measured in units of A /b, and U is the
wave velocity in units of c. Integrating Eq. �1� and restricting
ourselves to the periodic solutions with �U��1 we obtain

� = arcsin��cn�− 

�� ,

� � � = 2
dn�

� , �2�

w = U� ,


 = �m�1 − U2��−1/2,

where dn�
 ,m� and cn�
 ,m� are the elliptic Jacobi functions,
m is the modulus of the elliptic function, and U and m are
constants ��U��1,0�m�1�. We normalize in such a way
that the period of 	 is 2� and find that

k =
�


2K
, �3�

where K�m� is the complete elliptic integral of the first kind.
If m=1 formula �2� describes a soliton �or kink� solution

�5,6� moving along the x axis with speed U. In terms of the
FK model, a kink is a configuration of n masses �asperities�
placed in n+1 �or n−1� periods of substrate. This configu-
ration will be referred to as a positive �or negative� disloca-
tion. Let us review some of the features of kinks. Kinks
�dislocations� are stable spatially localized formations, which
can freely move in either the positive or negative directions
with speeds varying from zero to the speed of elastic com-
pressional waves ��U�=1�. If a kink passes by some fixed
point, the magnitude of � changes by 2�. In terms of plate
movement it means that the passing of one dislocation is
equivalent to relative displacement of the plates by one sub-
strate length b; positive and negative dislocations correspond
to motion of the plates in opposite directions. Kinks of the
same sign interact like elastic balls. Kinks with opposite sign
attract each other and can pass through each other without
change. Under some conditions, kinks of opposite sign can
form certain stable and localized configurations known as
breathers. The breather can move like a dislocation; however,
in contrast to the dislocation, it does not displace the plate
after passing. The energy of a breather lies between zero and
the energy of two isolated dislocations. The breather has a
remarkable property: inside the breather, the total energy is
constant, kinetic energy being transformed into potential en-
ergy and vice versa �similar to a standing wave on a spring,
hence the name “breather” �5��. In the framework of our
model it means that relative oscillatory small-scale motion of
plates is possible locally.

Solution �2� with m�1 is interpreted as an infinite suc-
cession of interacting dislocations. In terms of dislocations,
the variables N=k / �2�� and U are, respectively, the dimen-

sionless density �in units of A /b� and velocity of disloca-
tions. Let us average, over one oscillation period, the mag-
nitudes of �, �, and w:

� � ��� =	 �d	

2�
=

�


2K
� k, E � ��� =	 �d	

2�
,

W � �w� =	 wd	

2�
= Uk . �4�

� �in units of �c2A /2��, E �scaled by A / �2���, and W �in
units of cA /2�� can be interpreted as the average stress,
strain, and velocity of relative plate movement, respectively.
Note that N can be expressed through the strain by N
=E / �2��. Relations �2�–�4� connect important parameters:
the wave velocity U and density N of dislocations, the aver-
age velocity of plate movement �or particle velocity� W, and
the average stress � �or average strain E�.

Since the processes of plate movement are essentially
nonstationary, let us consider certain nonstationary solutions
of the SG equation, suitable for the investigation of the dy-
namics of a group of dislocations.

B. Nonstationary solution

Whitham �4� developed a variational method for the solu-
tion of nonlinear dispersive partial differential equations.
This method is based on the definition of a system of modu-
lation equations describing slow variations in the parameters
of a wave train. This is convenient for the investigation of
the dynamics of a wave train with a large number of oscil-
lations �dislocations�. For the SG equation, Whitham’s
method was developed and applied by Forest and McLaugh-
lin �60�, Gurevich et al. �61�, and Gershenzon �62�. Here we
will use the results described by Gershenzon �62�. Whith-
am’s equations, based on the SG equation, are the following
�61,62�:

U�

�

U2 − 1
+ m�

U

2m
+ U�

U�

U2 − 1
+ m�

1

2m
= 0,

U�

U

U2 − 1
+ m�

�

2mm1
+ U�

1

U2 − 1
+ m�

U�

2m
= 0,

where �=E /K, m1=1−m, and E�m� is the complete elliptic
integral of the second kind. These equations are valid for �
�1 and ��1.

We limit our consideration to the “self-similar simple
wave” solution. In this case all variables appearing in the
solution can be expressed in terms of the modular variable
m:

�

�
= V�m� , �5�

V =
G − �

G + �
, U =

� − �

� + �
,
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k = E = 2�N = � =
��� + ��
2K
m��

, W = Uk , �6�

where G=���−
m1� / ��+
m1�, �= �1−
m1�2 /m, and � is a
constant �0���1� determined by the conditions of the
problem �see Sec. V�. The variable V is the nonlinear group
velocity in units of c, i.e., the velocity of an object having a
constant value of m. For the interpretation of this solution,
the �� ,�� plane will be utilized �Fig. 2�. Along the lines
� /�=V=constant all variables, including m, are constant.
The solution is represented by the region expanding in time
and limited by the lines � /�=V�0�=V−=−1 and � /�=V�1�
=V+= �1−�� / �1+��. Here and below the indices + and −
designate the leading and rear edges, respectively. The quan-
tity V+ is the velocity of the leading edge or the velocity of
the first dislocation. To the right side of the line � /�=V+,
disturbances are absent �N=0, W=0, and �=0� and waves
move into the quiescent region with velocity V+.

Another case of interest occurs when m is restricted to
values very close to 1 �see Sec. V�. In this case, m1�1 and
formula �6� can be simplified:

U = � − m1
1/2,

V = � − m1
1/2 ln�m1

−1/2� , �7�

k = 2�N = E = � = �/ln�m1
−1/2� ,

W = ��� − m1
1/2�/ln�m1

−1/2� ,

where �= �1−�� /2. We have used the approximation
ln�m1

−1/2��1, which is equivalent to the condition 2N�1.
This means that the distance between dislocations is much
larger than the dislocation width.

V. MODELING OF PLATE MOVEMENT AND ASSOCIATED
PHENOMENA: COMPARISON OF ESTIMATES

WITH FIELD DATA

Let us consider the following scenario. We propose that
relative plate movement along a fault occurs due to motion

of dislocations along the boundary of the plate �here and
below the term “dislocation” is used in the sense of the FK
model�. As a dislocation passes along the length of the plate,
it shifts the plate by the length of one substrate period b. A
dislocation also can relax stress and strain. If the substrate
has only small irregularities, dislocations can move steadily
under the action of a relatively low external stress. In this
case, the plate moves quasicontinuously. This is the creep
state. So as a first approximation plate movement can be
modeled by the motion of a group of dislocations �63�. The
average density of dislocations is proportional to the average
strain at the plate boundary. The average velocity of disloca-
tions is the velocity of the corresponding strain wave.

In nature, plate surfaces are usually not uniform and con-
tain irregularities on all scales �64�. Any substrate inhomo-
geneity tends to impede dislocation motion �“pins” or “traps”
them�. At a strong trap the dislocations will pile up. This
local increase in dislocation density leads to increasing strain
energy of their interaction. If some threshold strain value is
exceeded, this local quasiequilibrium state becomes unstable
and the energy of dislocation interaction transforms into en-
ergy of plate movement along the fault. This is the earth-
quake state.

During an earthquake the dislocation density quickly de-
creases �process of stress drop�; nevertheless it still remains
higher than the density outside the focal zone. The conse-
quent diffusion of dislocations �afterslip� triggers after-
shocks. We shall assume in this paper that an aftershock is
triggered by the stress changes accompanying the propaga-
tion of a strain wave. Later in this section we will show that
the velocity of diffusion is an almost exponential function of
dislocation density �or strain�. Thus the decrease in strain
with time is reflected in a decrease in the number of after-
shocks.

Dislocations of a given sign cannot disappear. After an
earthquake they continue to move along the fault, encounter-
ing other traps with other thresholds �1�, accumulating, and
triggering new earthquakes. In the remainder of this section
we will show how some quantitative parameters related to
these processes can be evaluated by the solutions that we
have displayed.

A. Propagation of strain waves

In the framework of our model, the velocity of a strain
wave and the velocity of plate movement are naturally con-
nected. Using the periodic solution �Eqs. �2�–�4�� and return-
ing to dimensional variables we obtain

W = UNb = UE ,

� =
W�c2

U
. �8�

Note that, in spite of the fact that the relations among W, U,
and E �or �� were obtained from the FK model, they do not
contain any “microparameters” of this model since they are
parameters averaged over the period of an elliptic function.
Nevertheless the stress amplitude �0 and strain amplitude �0
depend on one microparameter, A:

FIG. 2. Isolines of the function m�� ,��. All process parameters
�average stress and strain, density of dislocations, and all velocities�
are constant along the lines �characteristics� � /�=V�m=const�.
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�0 = �c2�0 =

c2A�

�
�

c2�A

�
. �9�

The last approximation is valid if U�c and m1�1, which
almost always is the case. In this situation, the values of �0
and �0 do not depend on any process parameters such as the
velocity of a process and the dislocation density. They de-
pend on the model parameters only, such as c, �, and A. In
particular, it means that there are “maximal” values of stress
and strain which the crustal material is able to handle with-
out destruction. Indeed, from the point of view of the FK
model the stress �0 is exactly the stress needed to move
uniformly all the balls across of the sine-shaped surface �see
Fig. 1�, which means that the balls �or upper surface� could
move freely relative to the bottom surface �crustal failure�.
Thus, the quantities �0 and �0 could be interpreted as the
maximal values for a fault with the above material param-
eters.

Let us estimate the typical values of strain and stress.
Using a plate movement velocity W=3 cm /year, strain
wave velocity U= �10–100� km /year, crustal density �=3
�103 kg /m3, elastic compressional wave velocity c=6
�103 m /s, and “microfriction” parameter A=10−3 �this
value will be estimated below�, we obtain from formulas �8�
and �9�: average strain E=3� �10−6–10−7�, average stress
�=0.3–3 bar, maximal strain �0=2�10−4, and maximal
stress �0=200 bar. We see that for stationary plate move-
ment, relatively small values of average stress and strain are
needed. Local stress and strain values �at the maximum of
the elliptic function� are much higher but still reasonable.
This is consistent with the fact that during frictional pro-
cesses the main stress occurs at only a few spots.

B. Earthquakes

The appearance and propagation of rupture is an impor-
tant part of fault dynamics. A rupture arises due to stress
accumulation during relative plate movement. On the other
hand, a rupture itself causes an acceleration of inelastic stress
and strain propagations along the fault. In the framework of
our model, the accumulation and release of stress are equiva-
lent to the accumulation and take-off run of dislocations. In
what follows, the self-similar simple wave solution obtained
earlier will be used for modeling the propagation of rupture.

As initial conditions ��=0�, we consider that �=0 divides
two areas of different dislocation density and velocity:

N�� � 0,� = 0� = N−, U�� � 0,� = 0� = U−,

N�� � 0,� = 0� = N+ � N−, U�� � 0,� = 0�U+.

What is time evolution of this system? It is described by
dimensionless formulas �5� and �6�

� = �−1 − U−

1 + U− , �− � ��m−� , �10�

where m− is defined from the relation

N− = �4K−�m−�1 − �U−�2�
1/2
−1, K− � K�m−� . �11�

Formulas for the velocity of the leading and rear edges are

V− = �G− − ��/�G− + ��, G− � G�m−� ,

V+ = �G+ − ��/�G+ + ��, G+ � G�m+� , �12�

where m+ is defined from the expression

N+ =
�+ + �

4K+�m+�+��1/2 , K+ � K�m+�, �+ � ��m+� ,

�13�

with � from Eq. �10�.
If N+�1 and N−�1 formulas �10�–�13� are simplified,

and we find

1 − �

2
= U− + e−1/�2N−�, m1

− = e−1/N−
, �14�

V− = U− − �2N−�−1e−1/�2N−�,

V+ = U− + e−1/�2N−� − �2N+�−1e−1/�2N+�. �15�

So relations �5�, �6�, and �10�–�13� in the general case and
Eqs. �5�, �7�, �14�, and �15� in the case N�1 provide the
solution to this problem. These solutions are suitable for
modeling earthquake dynamics. We need to find a minimal
set of macroparameters whose values can be obtained from
experiment, in term of which we can determine all other
parameters and describe the dynamics of the process. It is
natural to assume that U−=0 and N+=0 since before the
earthquake the dislocation velocity inside the focal zone �U−�
and the dislocation density outside the focal zone �N+� are
presumed small. If we choose only one specified macropa-
rameter, for example, the speed of rupture propagation �V− in
our model�, then the remaining parameters may be obtained
�in dimensionless form� using the various formulas. Let us
illustrate how this works. First we express V− in dimension-
less units using the given model parameter c. With the con-
dition U−=0 and N+=0, formulas �10� and �12� reduce to

� = �−, �− � ��m−�, and

V− = �G− − �−�/�G− + �−�, G− � G�m−� .

These allow us to find m− from V−. Knowing m− then allows
us to obtain the density of dislocations in the pileup �N−�, the
initial stress ��−�, and/or the strain �E−� in the focal area
immediately before the earthquake, as well as the velocity of
propagation of the front edge �V+�, from

N− = �−/�2�� = E−/�2�� = �4K−�m−�1/2
−1, K− � K�m−� ,

V+ = �1 − ��/�1 + ��, � � ��m−� ,

derived from formulas �6�, �11�, and �12�. Figure 3 depicts
the dependence of V−, �−, E−, �, and V+ on m−. From this
figure one can find all these parameters from the given value
of V− and then can describe quantitatively the dynamic be-
havior of the rupture process using formula �6�. Figure 4
depicts the spatial distribution of the variables, V�x�, U�x�,
W�x�, ��x�, and E�x� �in dimensionless units�, in the case
V−=0.5c for x in units of 0.5ct at any time in the interval
0� t�T, where T is the rise time.
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We see that a disturbance �rupture� propagates in both
directions away from the epicenter; however it runs much
faster in the direction of the largest dislocation density, in-
deed �V−�� �V+� and �x−�� �x+� if N−�N+ and U−=0 �see Fig.
4�a� and formula �15��. The rupture continues to propagate
until the rear edge reaches the end of the pileup. The extent
of the pileup is the focal zone. The time of passing through
the focus is the “rise time” T= l− /V−, where l− is the focal
size. The size of the rupture zone in opposite direction is

l+ = V+T = V+l−/V−. �16�

All dislocations in the disturbed area move in one direc-
tion �from the left to the right in Fig. 4� and U�x� is positive

for all x �Fig. 4�a��. The velocity of dislocations is a mono-
tonic function of x and changes from U−=0 to U+=V+. The
strike slip velocity �particle velocity� W also has constant
sign, however, in contrast to U, the function W�x� has a
maximum at the epicenter and vanishes at the boundaries of
the disturbed area �Fig. 4�b��. After the rupture the internal
stress and dislocation density inside the focus are lower than
their initial values but still higher than outside the focal zone.
It means that only part of the initial stress drops as a result of
the earthquake. Taking into account that the total number of
dislocations is conserved and using relations �6� and �10�, we
find the magnitudes of the relative stress drop �,

FIG. 3. The dependence of model variables �� ,V− ,V+ ,� /E� on m−, the elliptic function modulus for the rear edge of a disturbance.
Graphs �B� and �D� show the variables on an expanded scale near m−=1.
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FIG. 4. Spatial distribution x of �A� the group velocity V�x� and
dislocation velocity U�x�, �B� particle �or plate� velocity W�x�, �C�
stress ��x�, and strain E�x�, at a given time t�0� t�T� during an
earthquake. All variables are in dimensionless units.

FIG. 5. The preseismic stress �, strain E, and postseismic stress
drop �� as functions of rapture velocity. All variables are in dimen-
sionless units. The stress, strain, and stress drop vary insignificantly
for a wide range of seismic events, from very slow slips to regular
earthquakes.
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� =
�−

1 + �− , �− � ��m−� . �17�

So far all our calculated parameters are in dimensionless
form. Some can be converted to dimensioned forming using
our model parameters c and �. But others, such as the strain
�, stress � and absolute value of stress drop ��, require a
knowledge of the microfriction parameter A. Another such
quantity is S�x , t�, the relative displacement of the plate
boundaries. It is given by

S�t,x� = �
0

t

W�m�t�,x��dt�

= �
0

t

�cA�� − �−��4K�−1�m��−�−1/2dt�. �18�

Here m�t ,x� is expressed through x and t by using relation
�5�. At the epicenter x=0, the particle velocity is constant in
time since m�x=0�=const and V�x=0�=0. In this case the
expression for the displacement is simplified to S�0, t�
=W�x=0�t.

In order to find the value of A we need to know the value
of one more macroparameter �besides V−� such as the veloc-
ity of plate movement during the earthquake �W�x=0�� or the
strain in the focal zone immediately before the earthquake
�E�t=0,x=0��:

A = 2�E�t = 0,x = 0�/E�� = 0,� = 0� ,

A = 2�W�x = 0�/�cW�� = 0�� , �19�

where E�t=0,x=0� is unscaled and W�x=0� is dimensioned,
and E��=0,�=0� is scaled and W��=0� is dimensionless
and expressed thorough V− by formulas �6�, �10�, and �12�.

Let us check our model using data from the Imperial Val-
ley earthquake �1979� �Table I�, which has been investigated
rather thoroughly. As initial data we will take V−=0.5c as the
averaged rupture velocity and the size of the rupture zone
l−=35 km or, more precisely, the extent of the rupture from
the epicenter to the north end of the rupture �65�. The param-
eters m1

−=0.02568, N−=0.156, T=12 s, V+=0.16c
=960 m /s, l+=11 km, and �=0.24 can be found from for-
mulas �6�, �10�–�12�, �16�, and �17�. We can now obtain the
parameter A. Assuming S�x=0�=1 m �see �65�� we calculate
W�x=0�=S�x=0� /T=0.086 m /s and A=10−3 using the sec-
ond formula of Eq. �19� and the value W��=0�=0.085 ob-

tained from Fig. 4�b�. Now we can find the initial values of
strain and stress, E=0.8�10−4 and �=88.5 bar, and the
stress drop ���E�=21 bar �see Table I�. The magnitudes
of the calculated earthquake parameters are in reasonable
agreement with values obtained from the faulting model
based on the near-source strong motion data �64,65�.

C. Afterslip

After the earthquake, dislocations continue to move from
the focal area and stress continues to relax. Aftershock and
afterslip activities reflect these processes. The quantity V+

defines the velocity of inelastic stress relaxation or the ve-
locity of propagation of the disturbance. The value of V+

could be much smaller than the velocity of elastic compres-
sional waves c. Note that �V−�� �V+� if N+�N−�1 �see Eq.
�15��. In particular, it means that the disturbance propagates
faster along the more highly stressed portion of the fault. It
means also that, as a result of dislocation diffusion through
the boundaries of the region of high dislocation density, the
pileup slowly spreads. During this time the dislocation den-
sity �and stress� decreases slowly, but almost uniformly,
along the pileup.

Let us find some afterslip parameters. The formulas ob-
tained above exhibit strong spiking and are suited for the
description of rupture. However, we can also use them for
the approximate description of the postseismic process.
Since the number of dislocations is conserved, we can write

Np�t��l0�1 + �� + �
T

t

V+�t��dt�� = N−l0, �20�

where Np�t� is the density of dislocations averaged along the
pileup. The relation Np�1 will be satisfied shortly after the
earthquake occurs �t�T�. In this case we can use an approxi-
mate expression for V+: V+=e−1/�2Np� �second formula of Eq.
�15��. Then Eq. �20� leads to the following expressions:

Np = �2 ln ��−1, V+ = c�−1, and x+ = 2N−l0 ln � ,

�21�

where

� = e�1+��/2N−
+

c�t − T�
2N−l0

and t � T .

The expression for the magnitude of S after the earthquake is

TABLE I. The calculated values of earthquake and afterslip parameters for the Imperial Valley earthquake
of 1979.

Time �t� V+ 10−5E
�

�bar�
��

�bar�
x+

�km�
S�x=0�

�m�

0 1 km/s 8 88.5 0 0 0

12 s 1 km/s 6 67.5 21 11 1

1 day 11 km/day 2.3 25 63.5 97 1.9

1 month 11 km/month 1.6 18 70.5 134 2.2

1 year 11 km/year 1.2 13.5 75 162 2.4
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S�x,t� = �
t�

t

AcNpUdt�, where t� = Tex/�2N−l0�. �22�

For the case N+�Np�1, U is an almost linear function of x:

U � V+�x + l−�/�x+ + l−� . �23�

Formula �22� with the parameter U given by Eq. �23� and Np
and x+ given by Eq. �21� defines the spatial and temporal
distribution of S after the earthquake.

Using the data from the Imperial Valley earthquake �65�
and relations �21�–�23� we can estimate the magnitude of the
afterslip parameters V+, E, �, ��, x+, and S�x=0� for one
day, one month, and one year after the earthquake �see Table
I�. The first two rows in the table contain the values of the
parameters before and immediately after the earthquake.

From expression �21� it follows that the velocity of inelas-
tic stress propagation after an earthquake is proportional to
1 / �const+ t�. The number of aftershocks n�t� occurring �per
unit time� at time t obey the modified Omori law n�t�
=b / �const+ t�q �28�, where a and q are some constants and q
ranges from 0.5 to 2. Assuming that the strain wave triggers
aftershocks, one may conclude that our finding is consistent
with Omori’s law.

The velocity of inelastic stress propagation depends on
the size of the focal zone as well as the initial stresses �sec-

ond formula of Eq. �21�� if t�T+
2N−l0

c e�1+��/2N−
�102 s. So

the value of V+ decreases from 1 km/s just after the earth-
quake to 10 km/year one year after �see second column in
TableI�. The stress �dislocation density� relaxes very slowly
after the earthquake. After one year the stress and strain have
decreased to only about one-seventh of their initial values.
The size of the disturbed area also increases very slowly.

It was shown recently �38� that the spatial decay of after-
shock density is proportional to an inverse first-power law.
Our model is consistent with this finding. Indeed, from the
first and the last formulas in Eq. �21� we find that Np
�1 /x+. Since stress is proportional to dislocation density,

and with an assumption that the spatial density of aftershocks
is proportional to the stress change, we obtain aforemen-
tioned power law.

D. Slow earthquakes

The so-called slow earthquakes include tremor, low-
frequency earthquakes, very low-frequency earthquakes, and
silent earthquakes �see �43� and references therein�. In addi-
tion to features already mentioned in Sec. I, these slow
events are accompanied by a lower stress drop �up to 2 or-
ders of magnitude less� with about the same seismic moment
as regular earthquakes. Slow events occur only in the sub-
duction zone or in the lower part of the crust, where friction
parameters could be different from the more rigid upper
crust. Can our model describe dynamics of slow earth-
quakes?

Supposing as before that U−=0 and using the relations
�−=E−=2�N−, we can find from formulas �10�–�12� and
�17� the relationship between rupture velocity and initial ac-
cumulated stress as well as stress drop after the event �see
Fig. 5�. From this figure one can see that when the rupture
velocity is reduced by 6 orders of magnitude �from 0.5c to
5�10−7c� the value of initial stress varies only by a factor of
6, the relative stress drop by a factor of 5 �from 0.24 to 0.05�,
and so the absolute value of stress drop by a factor of 30. The
about the same level of stress buildup could cause ether a
regular earthquake or slow event. However, a slow event still
requires a little less energy buildup. In our model, the accu-
mulated stress and stress drop could be estimated by any two
known experimental parameters, for example, rupture and
particle velocities. Experimental data for slow earthquakes
are presented in Ref. �43�. Using these data we can calculate
the average rupture and particle velocities and estimate the
initial accumulated stress and strain and stress drop using our
model. The results are presented at Table II. Column 4 con-
tains the experimental stress drop ���� estimated by the re-
lation ����0D /L, where �0=�cs

2 and �=3�103 kg /m3,

TABLE II. The parameters of slow earthquakes �T, D, and L are, respectively, the characteristic time of event, the averaged amount of
slip, and dimension of the fault plane; SSE: slow slip event, ETS: episodic tremor and slip�, �column 1–3� from �43�; experimental stress
drop �column 4�; modeled accumulated stress before events �column 5�; modeled stress drop �column 6�; modeled accumulated strain �7�.

Type

1 2 3 4 5 6 7

T
�s�

D
�m�

L
�m�

Stress
drop
�bar�

Accumulated
stress �bar�

model

Stress drop
�bar�

model

Accumulated
strain
model

SSE short-term 3–6�105 0.008–0.026 3–5�104 0.17–0.32 6 0.37 0.32�10−5

SSE long-term 107 0.11 5–7�104 1.2 50 2.5 2.6�10−5

Silent earthquakes 3�107 �0.18 6�104 1.9 143 6.9 7.5�10−5

5�107 0.2 105 1.26 95 4.6 5�10−5

1.7�107 0.1 2–5�105 0.18 6.1 0.33 0.32�10−5

ETS 2–3�106 0.02 1.5�105 0.084 2.5 0.15 0.13�10−5

Afterslip 3�107 0.7–0.9 105 5 276 13.7 14.4�10−5

Slow slip �creep� 2�105 0.03–0.1 5,000 8.2 264 14.5 13.8�10−5

Slow slip in volcano 1.9�105 �0.015 1.5�104 0.6 17 1 0.9�10−5
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c=8�103 m /s, and c /cs=1.75. Here cs is the shear velocity,
D is the average amount of slip, and L is the dimension of
the fault plane. Column 6 shows the calculated values of
stress drop using our model. Although the modeled values
are in reasonable agreement with experimental values, the
former is larger by a factor of 1.5–3. For some events �see
rows 5 and 7� the estimated initial stress and strain are too
high, suggesting that the approximation of constant propaga-
tion velocity does not apply for some slow events. In this
case more realistic data could be used, e.g., the values of
rupture and particle velocities as function of time. The over-
all we consider that the proposed model could be used for a
quantitative description of slow earthquake processes.

VI. CONCLUSIONS

�1� The 1D Frenkel-Kontorova �FK� model has been used
for description of the plate movement along transform faults.
It is assumed that the surfaces of the plate boundaries are
uniform but contain spatial heterogeneity �asperities�. These
asperities, under external stress, cause the appearance of dis-
locations. Relative displacement of the plate boundaries is
realized due to the movement of these dislocations. Such
motion of rough plate surfaces requires much less external
stress than spatially uniform movement.

�2� In the continuum limit the FK model is described by
the sine-Gordon equation. Here we have used only the solu-
tions representing kinks �of one sign� to model a group of
dislocations. The formulas obtained are suitable for describ-
ing strain waves, earthquakes, and afterslip.

�3� In the framework of the continuum FK model, the
fundamental velocities, inelastic strain waves V, and plate
movement W are naturally connected by Eqs. �8�, �10�, and
�12�. And the magnitudes of both W and V cannot exceed the
third fundamental velocity, c, of elastic compressional
waves. Note that these relations do not contain any micropa-
rameters of the model.

�4� In terms of the model considered here, a wave of
inelastic stress disturbance �a hyperbolic wave, in contrast to
an Elsasser diffusion wave� could propagate along a fault
with any velocity from zero up to the velocity of elastic
compressional waves. The magnitude of the velocity is a
strong �almost exponential� function of stress or strain and
changes from a few km/s during earthquakes to a few dozen
km per day, month, or year during afterslip and in-
terearthquake periods.

�5� Formulas �5�–�7�, �10�–�18�, and �21�–�23� describe
the dynamics of earthquake and afterslip, respectively. It is
sufficient to specify two macroparameters, for example, the
strike-propagation velocity and the particle velocity �which
can be found from observations of the size of the rupture
zone and plate displacement, respectively, together with the

observed rupture time� and the model parameters of crustal
density and elastic compressional wave velocity, to calculate
such process parameters as the initial stress and strain, the
stress drop, and the postseismic temporal and spatial distri-
butions of the stress, strain, particle velocity W�x , t�, dis-
placement S�x , t�, and velocity of inelastic stress propagation
V�x , t�. The values of the calculated parameters for the Im-
perial Valley earthquake of 1979 are in reasonable agreement
with values obtained from measurements.

�6� The velocity of inelastic stress propagation after an
earthquake is proportional to 1 / �const+ t�. The temporal dis-
tribution of aftershocks, n�t�=a / �const+ t�q �modified
Omori’s law �28��, shows the same time dependence �for p
=1� suggesting that aftershocks are triggered by strain waves
generated by the earthquake. Our model is also consistent
with the spatial decay of aftershock density being propor-
tional to an inverse first power of distance from the main
shock �38�.

�7� One of the basic solutions of the SG equation is a
breather. Thus the model predicts the possibility of the exis-
tence of some local formations with internal motion. As a
result of this motion, the local relative plate displacement
changes sign periodically in time and space. A breather is
formed, under certain conditions, by the interaction of two
dislocations of opposite sign. Lattice impurities �in our case
substrate heterogeneities� interact with breathers, absorbing
them �66�. Breathers dissipate with time, losing their strain
energy via seismic radiation. The breather entity appears to
be the almost the same thing as a quasidislocation of null
Burgers vector �67,68�.

The presence of breathers in fault dynamics may have
been observed after the Loma Prieta earthquake �1989�. In-
deed, an unusual behavior of the aftershocks was noted.
There were large numbers of right-lateral, left-lateral, re-
verse, and normal faulting aftershocks �69–71�: in many lo-
cations, seemingly incompatible types of earthquakes oc-
curred in approximately the same place �citation from �71��.
The phenomenon finds a possible explanation via the
breather solution.

�8� Our model does not consider energy dissipation which
accompanies plate movement. Other solutions of the SG
equation are breathers and phonons. Breather energy could
be transferred to the phonons and eventually to the heat.
Thus there is a possibility to describe transformation of the
elastic energy to the heat in the framework of the continuum
FK model.
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